TPPE74 Design and Development of Manufacturing Operations

Industrial Engineering and Management of European Higher Education

Seminar 2

System Design

Fredrik Persson

2021

februari 2023

d#\

The European Commission support for the production of this publication does not constitute endorsement of the contents which reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Content

- The Project Tasks
- The Manufacturing System
- Task B
- System Design
 - ROP
 - MRP
 - CP/CPB
 - Lean
- Lead Time and Cycle Time

PicSim

- Production and Inventory Control Simulator (PicSim)
- Simulation model
 - 3 years of production
 - 1 year "Warm-up"
 - 2 years data collection
 - ...takes apr. 0.1 second...

Simulation Result for the Case Company

Simulation Results			Simul	ation Re	sults					
Group No.	1					/ Max	x 680	000		
Run No.	0				/					
Input data										
Product/Item	A1	A2	A3	A4	A5	A6	A7	A8	A9	
Lead time	3	4	3	4	4	3	3	3	3	
Order quantity	495	632	692	1611	2619	2000	226	1732	1342	
Safety stock	200	100	300	400	600	1400	100	1200	900	
Costs										
Ordering cost	158400		Total Orde	ering Cost		158400			Max	340 000
Inventory of raw materials	94587		Total Inve	ntory Cost		498498 -				
Work in process	347459									
Semi-finished and finished goods inventory	56452									
Total	656898									
Service levels (%)										
Product 1	28.3									
Product 2	72.8		🛛 Miı	n 95%	6					
Product 3	20.8				0					
Overall	28.5	<u> </u>								
Statistics										
Stockouts of finished products	3583.00	680.50	5940.00							
Average inventory level A1-A9	-434.00	186.00	-1149.00	721.50	975.00	2040.00	177.50	3103.00	4858.50	
Average actual lead time A1-A5 (weeks)	7.09	8.69	7.36	11.20	15.25					
Average queueing time P1-P5 (hours)	51.34	37.77	44.98	88.66	53.36					
Average load P1-P5 (%)	82.46	67.13	66.21	78.77	73.03					
Inventory turnover rates										
Raw material inventory	8.54									
Work in process	5.89									
Semi-finished and finished goods inventory	36.23									
Total	5.72									

Four Tasks in the Project

- Task A
 - Create graphs over nine different relationships.
 - Lisam Quiz to test conceptual shape.
- Task B
 - Run 10 simulations (we run the model) with the target to reach: Inventory cost: 340 000 kr
 Service level: 95 %
 Total Cost: 680 000 kr
 - Test all different planning methods
 - Lisam Quiz before simulations (at least one in each group needs to pass)
- Task C
 - Carry out a setup time reduction and study the effects.
 - Run 3 simulations (we run the model) to study the effects.
- Task D
 - Formulate system specific guidelines and rules that apply to the design parameters.
 - Run 3 simulations (we run the model) to "optimize" the system.
 - Competition!

Supervision

- Supervision in Teams, lists for booking
 - Week 14 to week 20, one day a week, see Time Edit
 - 08:30 -10:00 Booking in Sign Up (Lisam)
 - 10:15 -11:30 Free supervision (Lisam)

Project Task

- Manufacturing System
 - 9 products, 3 end-products, 2 manufactured components and 4 purchased components
 - 5 planning groups (resources)
 - 5 planning methods, Reorder point, MRP, Cyclic planning, Cyclic planning with base period, and Lean Production

Project Task

- Manufacturing System
 - 9 products, 3 end-products, 2 manufactured components and 4 purchased components
 - 5 planning groups (resources)
 - 5 planning methods, Reorder point, MRP, Cyclic planning, Cyclic planning with base period, and Lean Production

Batched Production!

Table 1.	Means	and star	ıdard de	eviations j	for week	ly demand.
----------	-------	----------	----------	-------------	----------	------------

End product	Mean value	Standard Deviation
A1	100	12
A2	50	8
A3	150	15

Table 2. Product values in SEK per unit.

Products	Value
A1	1060
A2	500
A3	940
A4	370
A5	210
A6	70
A7	390
A8	80
A9	100

	0 1 $($					
Plan	ning Group \ Product	A1	A2	A3	A4	A5
P1	Assembly and Processing	0.03	0.05	0.07	0.02	0.04
P2	Surface treatment	0.06	0.08	-	0.02	0.04
P3	Processing	-	-	0.05	0.03	0.04
P4	Drilling	-	0.05	-	0.02	0.08
P5	Packing and Inspection	0.11	0.06	0.10	-	-

Table 3. Processing times per unit (hours).

Table 4. Setup times and capacities for planning groups.

Planning Group \ Product		Setup time	Capacity	
		[hours]	[hours/week]	
P1	Assembly and Processing	2	40	
P2	Surface treatment	2	40	
P3	Processing	3	40	
P4	Drilling	3	40	
P5	Packing and Inspection	1	40	

The Tasks

• Task B

- Improve the system in maximum 10 simulation runs
- Chose your runs carefully.
- Give a suggestion for "optimal" planning and control for the company.
- The evaluation...
 - Service level more than 95%
 - Total inventory holding costs less than 340 000 SEK
 - Total costs less than 680 000 kr
- Reorder point systems, MRP, cyclic planning (base period, common cycle), and Lean production.
 - Motivate recommended values.
 - Note that, in order to dismiss a planning system, strong empirical evidence is needed as motivation.
- Only control parameters may be changed in this task.
 - Planned Lead time, PLT
 - Order quantity, Q
 - Safety stock, SS

- Grade Pass requires the following:
- Active participation in the project group.
- For Task B:
 - Maximum of 10 simulation runs with at least 1 result is better or as good as the requirements (target values) for the total cost, total inventory cost and overall service level.
 - Theoretical motivation for all planning methods that show why or why not ROP, MRP, Cyclic planning and Cyclic planning with base period solution, or Lean Production is an appropriate planning method in this project.
 - Simulation results for all planning methods that show why or why not ROP, MRP, Cyclic planning and Cyclic planning with base period solution, or Lean Production is an appropriate planning method in this project.
 - Calculation and motivation for choice of Order quantities, Planned Lead Time, and Safety Stock and/or Safety Lead Time. For all runs.

Content

- The Project Tasks
- The Manufacturing System
- Task B
- System Design
 - ROP
 - MRP
 - CP/CPB
 - Lean
- Lead Time and Cycle Time

System Design 1: ROP

Table 6	: Design	parameters ROP system	
10000 0			

Design parameters	Reorder Point System Specific
Order quantities (Q)	EOQ, independent
Planned lead times (PLT)	PLT, Planned Lead time
Safety mechanisms (SM)	SS, Safety Stock

- All end products and components are totally independent
- ROP trigger production orders in the system
- ROP = R * PLT + SS

System Design 1: ROP – Synchronizing the planning design

- ROP
 - Totally independent

System Design 2: MRP

Table	7:	Design	parameters	MRP	svstem
10000	••				System

<u> </u>	
Design parameters	MRP System Specific
Order quantities (Q)	EOQ, for end product level.
	Components have Q according
	to BOM
Planned lead times (PLT)	PLT, Planned Lead time
Safety mechanisms (SM)	SS, Safety Stock or
	SLT, Safety Lead Time

- All end products are <u>independent</u>, but components are <u>dependent through the</u> <u>BOM</u>
- Forecasts are Weekly Demand
- Production orders are triggered based on ROP-like MRP calculations

System Design 2: MRP – Order quantities

- Use EOQ on end product level
- Integer multiples
 - Relative to the quantity of the end product
- Modification for items that are used in multiple positions
 - In the same product
 - In different products

System Design 2: MRP – Synchronizing the planning design

MRP

- Introducing _ dependency through the BOM
- Level 0: EOQ -
- Level 1 and below: -Multiples of EOQ (from BOM)

System Design 3: CP Common Cycle Time

Tuble 6. Design purumeters CI	system
Design parameters	Cyclic Planning Specific
Order quantities (Q)	Calculated through T _{opt}
Planned lead times (PLT)	PLT, Planned Lead time
Safety mechanisms (SM)	SS, Safety Stock or
	SLT, Safety Lead Time

Table 8: Design parameters CP system

- All end products are <u>independent</u>, but components are <u>dependent through the</u> <u>BOM</u>
- Manufacturing is synchronized in a bottleneck resource, using a cyclic plan
- Bottleneck analysis

System Design 3: CP T – Synchronizing the planning design

- CP Common Cycle Time
 - Introducing dependency through the BN Resource (PG)
 - Introducing indirect dependency through the BOM (end product R)

T_{C,OPT}

System Design 4: CP Base Period

Tuble 6. Design purumeters CI	system
Design parameters	Cyclic Planning Specific
Order quantities (Q)	Calculated through T _{opt}
Planned lead times (PLT)	PLT, Planned Lead time
Safety mechanisms (SM)	SS, Safety Stock or
	SLT, Safety Lead Time

Table 8: Design parameters CP system

- All end products are <u>independent</u>, but components are <u>dependent through the</u> <u>BOM</u>
- Manufacturing is synchronized in a bottleneck resource, using a cyclic plan
- Bottleneck analysis

System Design 4: CP B – Synchronizing the planning design

CP Base Period

_

System Design 5: Lean Production

8 1	
Design parameters	Lean Production Specific
Order quantities (Q)	As small as possible to follow
	single piece flow
Planned lead times (PLT)	PLT, Planned Lead time
Safety mechanisms (SM)	SS, Safety Stock or
	SLT, Safety Lead Time

Table 9: Design parameters Lean Production system

- All end products are <u>independent</u>, and components *can be* <u>dependent</u> <u>through the BOM</u>
- Minimize the order quatities to be as small as possible
- Close to full capacity utilisation

System Design 5: Lean – Synchronizing the planning design

- Lean Production
 - Dependency through the BOM
 - Minimizing Q

Content

- The Project Tasks
- The Manufacturing System
- Task B
- System Design
 - ROP
 - MRP
 - CP/CPB
 - Lean
- Lead Time and Cycle Time

Difference between Cycle Time and Lead Time

