
Methods for Business Modeling

Prof. Ing. Ivo Vondrak, CSc.

Dept. of Computer Science

Technical University of Ostrava

ivo.vondrak@vsb.cz

http://vondrak.cs.vsb.cz

mailto:ivo.vondrak@vsb.cz
http://vondrak.cs.vsb.cz/

References

1. Mayer, R.J., Painter, M.: IDEF Family of Methods, Technical Report, Knowledge
Based Systems, Inc., College Station, TX, 1991

2. Booch, G., Jacobson, I., Rumbaugh, J.: The Unified Modeling Language User
Guide, Addison Wesley Longman, Inc., 1999

3. Schmuller, J.: Teaching Yourself UML in 24 Hours, Sams, 1999

4. Vondrak, I., Szturc, R., Kruzel, M.: Company Driven by Process Models, European
Concurrent Engineering Conference ECEC ‟99, SCS, Erlangen-Nuremberg,
Germany, pp. 188-193, 1999

5. Wil van der Aalst. Formalization and Verification of Event-driven Process Chains.
Information and Software Technology, 41(10):639-650, 1999.

6. Wil van der Aalst. Workflow Verification: Finding Control-Flow Errors using Petri-
net-based Techniques. In Business Process Management: Models, Techniques,
and Empirical Studies, volume 1806 of Lecture Notes in Computer Science, pages
161-183. Springer-Verlag, Berlin, 2000.

7. Wil van der Aalst, Kees van Hee: Worklflow Management, Models, Methods, and
Systems. MIT Press, 2002

8. Češka, M.: Petriho sítě, Akademické nakladatelství CERM Brno, 1994

Contents

 Introduction

 Approaches to business modeling

 Formal methods for specification and analysis

 Software Tools

 Conclusions

About Methods for Business Modeling

 Method is well-considered (sophisticated) system of doing or arranging
something.

 Business Process is a set of one or more linked procedures or activities which
collectively realize a business objective or policy goal, normally within the
context of an organizational structure defining functional roles and relationships.

 Business Process Model is the representation of a business process in a form
which supports automated manipulation, such as modeling or enactment. The
process definition consists of a network of activities and their relationships,
criteria to indicate the start and termination of the process, and information
about the individual activities, such as participants, associated data, etc.

 Workflow is the automation of a business process, in whole or part, during
which documents, information or tasks are passed from one participant to
another for action, according to a set of procedural rules.

Methods for business modeling represent systematic
way how to specify and analyze business processes.

Source: Workflow Management Coalition

Purpose of Business Modeling

 Business Process Re-engineering (BPR) - methods that
support activities by which an enterprise reexamines its goals
and how it achieves them, followed by a disciplined approach
of business process redesign.

 Enterprise Resource Planning (ERP) - an information
system that integrates all manufacturing and related
applications for an entire enterprise. Business modeling is
the first step in the software process of the ERP
implemenation.

 Workflow Management (WFM) – generic software systems
used for definition, management, enactment and control of
business processes.

Ontology of Process Engineering

via

are mapped on

include one or more

is defined in a

during execution are

represented bydefine demand on

require

used to create

and manage

Business Process

(i.e. what is inteded to happen)

Process Specification

(a representation of what is

intended to happen)

Workflow Management System

(controls automated aspects of the business process)

Activities

Subprocesses

Process Instances

(a representation of what is

actually happening)

Roles

Activity Instances

Resources

is managed by a

composed of

Approaches to Business Modeling

 Abstract framework to business process specification

 Functional specification based on IDEF

 Process specification using EPC

 Object-oriented approach to structural modeling

 Using UML for business modeling

 Meta-model of business process

Abstract Framework

Implementation

Beginning

What?

Goals and functions

How?

Activities and processes

By whom and what?

Entities and resources

Generic steps how to

design business process

Three Fundamental Abstractions

 Functional View. The functional view is focused on activities
as well as on entities that flow into and out of these activities.
That means how the input is transformed to the required
output.

 Behavioral View. The behavioral view is focused on when
and/or under what conditions activities are performed. The
behavioral view captures the control aspect of the process
model.

 Structural View. The structural view is focused on the static
aspect of the process. It captures objects that are
manipulated and used by a process as well as the
relationships that exist among them.

Consider order

Accept?

Check

availability
Reject order

Available?

Make production

plan

Purchase material

Produce articles

Ship articles

Send bill

Check payment

End

Paid?

End

Yes No

No

Yes

Yes

No

Start

Order Processing

(Flow Chart)

Begining of

the process

Decision

block

Activity

End of the

process

Integration DEFinition

 IDEF (Integration DEFinition language) is a software
methodology and diagramming system developed by the US
Department of Defense.

 IDEF is used to produce a "function model". A function
model is a structured representation of the functions, activities
or processes within the modeled system or subject area.

 IDEF is based on SADT (Structured Analysis and Design
Technique), developed by Douglas T. Ross and SofTech, Inc.
In its original form, IDEF0 includes both a definition of a
graphical modeling language (syntax and semantics) and a
description of a comprehensive methodology for developing
models.

IDEF Languages

 IDEF0 is used to produce a "function model". A function

model is a structured representation of the functions, activities

or processes within the modeled system or subject area.

 IDEF1 is used to produce information model that specifies

structure and semantics of data.

 IDEF2 is used to model dynamic aspects of the system, i.e. its

behaviour.

 IDEFx other extensions (http://www.idef.com).

http://www.idef.com/

Basic Concepts of IDEF0

 As an analysis tool, IDEF0 assists the modeler in identifying

the functions performed and what is needed to perform them.

 The IDEF0 model diagram is based on a simple syntax. Each

activity is described by a verb based label placed in a box.

Inputs are shown as arrows entering the left side of the

activity box while the outputs are shown as exiting arrows on

the right side of the box. Controls are displayed as arrows

entering the top of the box and mechanisms are displayed as

arrows entering from the bottom of the box. Inputs, Controls,

Outputs, and Mechanisms (ICOMs) are all referred to as

concepts.

Basic IDEF0 Syntax

A0

Activity
Input Output

Control

Mechanism

Data or objects that are

going to be transformed

by a function (activity)

to the output.

Sources needed for

execution of the function.

Rules needed to

produce required

output.

Data or objects produced

by the function.

Identification of the

function in the function

hierarchy.

Hierarchy of Functions

 Each model shall have a

top-level context diagram,

on which the subject of the

model is represented by a

single box with its

bounding arrows. This is

called the A-0 diagram.

 Every diagram but the

context has from 3 to 6

functions.

 ICOMs may be

interconnected.

4

3

2

1

3

3

2

1

2

1

A0

A4

A42

A-0

A4

A42

A0
0

A-0

A0

Order

ProcessingOrder

Product

assortment

Shipped articles

Sales

TITLE:NODE: NO.:A-0 Order Processing

Manufacture

Context Diagram: Order Processing

Input

Control

Mechanism

Function

(Activity)

Output

Function ID

Identification of

child diagram

A0: Order Processing

1

Order

Consideration

2

Checking of

Articles

availability

3

A3

Production

4

Articles

Shipment

5

A5

Invoicing

Order

Product

assortment

Order rejected

Accepted order

Accepted Order

Product specification

Material

Product

Product

Articles

In stockl

Shipped Articles

Bill of sale

Sales

Manufacture

Dispatch

Department

Accounting

Department

Order closed

TITLE:NODE: NO.:A0 Order Processing

A3: Production

TITLE:NODE: NO.:A3 Production

2

Making of

Production Plan

1

Material

Purchase

3

Manufacturing

Product specification

Funding

Material

Production plan

Sales

Manufacture

Product

IDEF0 Pros and Cons

 Positive aspects

 Methods is well formalized. The syntax and semantics is well

defined.

 Function specification enables to analyze even complex processes.

 Methods is standardized by National Institute of Standards and

Technology (USA).

 Negative aspects

 IDEF0 is focused on functions and their decomposition. The time

ordering is not explicitly expressed.

 Complete specification of the process requires to employ other

methods like IDEF1, IDEF2 ... This issue makes resulting

specification too complex.

Exercise 1

 Create IDEF0 diagram for function Invoicing. Assume that

this function consists only from two other functions: Invoice

sending and Payment checking.

Process Specification Using EPC

 Event-driven Process Chains (EPC) are based on connecting

events and action to the sequences which collectively realize

a business objective.

 Event is the precondition for the activity. New event

(postcondition) is generated when the activity is finished. It

means that events defines the beginning and end of each

activity.

 EPC diagrams are used in SAP R/3 (ERP/WFM) and ARIS

(BPR).

EPC Diagram Elements

 Activities are the basic building blocks that define what

should be completed within the process execution.

 Events specify situations before and/or after the activity is

executed. It means that event may represent an output

condition of the one activity and an input condition for the

other activity at the same time.

 Connectors are used to link together activities and events.

This is a way how the flow of control is defined. EPC uses

the following three types of connectors: (AND), (OR) and

XOR (exclusive OR).

Semantics of Connectors

 AND is used either for splitting of the process to at least two

concurrent process threads of execution or joining of

concurrent threads to the one (synchronization point).

 XOR splits the process to just one optional thread of many

possible ones.

 OR is used to split process to one, second or both possible

threads of execution.

Order

received

Consider

order

XOR

Order

rejected

Order

accepted

Check

availability

XOR

Articles

available

Articles must

be produced

V

Purchase

material

Make

production

plan

Material

available

Plan

available

V

Produce

articles

Articles

produced

XOR

Ship order

Order shipped

Send bill

Outstanding

accounts

XOR

Check

payment

XOR

Order

completed

EPC:

Order Processing

Event

Activity

XOR-split

XOR-join

AND-split

AND-join

Structured EPC

 Complex processes have to include subrocesses –

hierarchical decomposition.

 Process paths represent the interface of the given process to

another one (reference to another process).

Structured EPC:

Order Processing

Subprocess

Process path

Order

received

Consider

order

XOR

Order

rejected

Order

accepted

Check

availability

XOR

Articles

available

Aricles must

be produced

Production

Articles

produced

XOR

Ship order

Order shipped

Invoicing

Extended EPC (eEPC)

 Additional information is expressed in a process model

 Organizational units responsible for activity execution

 Information sources and material

 ...

Order

received

Consider

order

XOR

Order

rejected

Order

accepted

Check

availability

XOR

Articles

available

Aricles must

be produced

Production

Articles

produced

XOR

Ship order

Order shipped

Invoicing

Sales

Sales

Dispatch

Department

Stock

Database

Enterprise

Resource

Planning

Manufacture

eEPC:

Order Processing

Organizational

unit

Information

sources

EPC Pros and Cons

 Positive aspects

 Method provides simple but powerful abstraction based on

chaining of event and activities that enables to model complex

processes.

 EPC is a part of widely accepted system like SAP and ARIS

 Negative aspects

 Language for EPC diagrams is not formally defines. Syntax

and semantics is not precise enough (e.g. OR has no obvious

semantics assigned).

 Missing formalism complicates portability of EPC between

various software tools.

Production

must be

started

Make

production

plan

Plan available

V

Produce

articles

Articles

produced

Order

received

Order

accepted

V

XOR

Invoicing

started

Pay deposit

Deposit payed

V

V

Send final bill

Payment

realized

Ship order

Order

completed

Cash payment

started

Pay cash

Cash payed

XOR

XOR

Outstanding

accounts

Check

payment

XOR

V

Faulty Process?

Process deadlock

Exercise 2

 Create Production subprocess with the respect to the

following rules:

 All needed material has to be purchased or only some

material has to be purchased or in case that all material is in

the stock no purchase is done.

 Concurrently with potential material purchase the production

plan is made.

 Articles production can be started only in case that material

and production plan are both available.

OO Approach to Structural Modeling

 Object is an entity with a well-defined boundary and identity

that encapsulates state and behavior.

 Class is a description of a set of objects that share the same

attributes, operations, methods, relationships, and semantics.

 Object-oriented system architecture is the structure of

connected objects that define resulting behavior of the system

through their communication (interactions).

Object Model

 Structural model of the business process is specified by class

diagram that consists of the following elements:

 Classes representing active (Workers) and passive (Entities)

objects.

 Relationships among these classes that enable

communication among their instances (objects).

Types of Relationships

 Association describes a group of links with common

structure and common semantics (a Person works-for a

Company). An association a bi-directional connection between classes

that describes a set of potential links in the same way that a class

describes a set of potential objects.

 Aggregation is the “part-whole” or “a-part-of” relationship

in which objects representing the components of something

are associated with an object representing the entire assembly.

 Generalization is the taxonomic relationship between a more general

element (the parent) and a more specific element (the child) that is fully

consistent with the first element and that adds additional information.

«worker»

Accounting Department

-amount

-due date

-bank

«entity»

Invoice

-article type

-amount

-price

«entity»

Order
«entity»

Article

«worker»

Organizational unit

«worker»

Manufacture

«worker»

Dispatch Department

«worker»

Sales

«worker»

Company
1 *

1

*

processes

1 1

specifies

1

-product0..*

produces 1

-delivery

1..*

ships

1

*

draws
1

*

checks payment

1

1

defines

Object Model: Order Processing
Class specifying

active object

Class specifying

passive object

Aggregation Generalization

Association Role of

object

Multiplicity

Exercise 3

 Create class diagram defined by classes Sales, Manufacture,

Product and Material. Describe the situation where Sales

purchases Material that is required by Product to be

produced. Manufacture produces the Product and uses the

Material for this purpose.

Using UML for Business Modeling

 The Unified Modeling Language (UML) is a standard

language used to visualize, specify, construct and

document the artifacts of a system.

 UML uses the following three diagram for purpose of business

modeling:

 Use case diagrams to specify functions of the system being

modeled.

 Activity diagrams to capture behavioral (control) aspect of

business processes.

 Class diagrams to specify structural properties of the system.

Functional View of the System

 Use case is the specification of a sequence of actions,

including variants, that a system (or other entity) can perform,

interacting with actors of the system.

 Use case diagram shows the relationships among actors and

use cases within a system.

 Actor is coherent set of roles that users of use cases play

when interacting with these use cases. An actor has one role

for each use case with which it communicates.

Order Processing

Customer

Production

«extends»

Invoicing

«uses»

Supplier

Use Case: Order Processing

Use case Order

Processing

Actor

Uses relationship specifies how

the behavior for the base use case

contains the behavior of the

inclusion use case.

Extends relationship specifies how the

behavior defined for the extension use

case extends the behavior defined for the

base use case.

Control Flow

 Activity Diagram is a variation of a state machine in which

the states represent the performance of activities and the

transitions are triggered by their completion.

 The purpose of this diagram is to focus on flows driven by

internal processing.

Consider

order

[Order rejected]

Check articles

availability

[Order accepted]

[Articles must be produced]

Purchase material Make production plan

Producte articles

Ship articles

[Aricles available]

Send bill

Check payment

[Not paid]

[Paid]

Activity Diagram: Order Processing
Initial

State

Final

State

Action State

(Activity)

Decision

Control

Flow

Join Transition

Fork Transition

Guard Condition

Subprocess

Accounting DepartmentDispatch DepartmentManufactureSales

Consider

order

[Order rejected]

Check articles

availability

[Order accepted]

[Articles must be produced]

Purchase material Make production plan

Produce articles

Ship articles

[Articles available]

Send bill

Check payment

[Not paid]

[Paid]

Responsibilities

(Swimlanes)

Dispatch DepartmentSales Accounting DepartmentManufacture

Consider

order

Check articles

availability

[Articles must be produced]

Purchase material Make production plan

Produce articles

Ship articles

Send bill

Check payment

[Not paid]

Order

[received]

Order

[rejected]

Order

[accepted]

Articles

[available]

Articles

[produced]

Articles

[shipped]

Invoice

[sent]

Invoice

[paid]

Flow of

Objects

Object in a

given state

Data

Flow

UML Pros and Cons

 Positive aspects

 UML provides a large number of diagrams enabling to capture
every aspects of the system being modeled.

 The notation of UML is standardized and it is used by many
software tools dedicated to software system design.

 Since the primary focus of UML is to write software system
blueprints it easy and straightforward to interconnect business
modeling with the specification of information system.

 Negative aspects

 UML is considered as a semi-formal method. The semantics
is not precisely defined. It might be a problem to verify
complex processes.

Exercise 4

 Define activity diagram for accounting department.

Accountant issues the invoice and then he/she sends it to

customer. In case that the total amount is higher than 5000

USD the invoice has to be authorized by a manager before it

is sent.

Meta-Model Specification

 Meta-model is a model that defines the language for

expressing a model.

 Business meta-model is a model for all above mentioned

modeling approaches.

Business Process Meta-Model

«metaclass»

Process

«metaclass»

Process step

«metaclass»

Activity

1

0..*

is coordinated with

«metaclass»

Role

*

*

is executed by

«metaclass»

Competency

*

*

specifies

«metaclass»

Resource
* *

provides

«metaclass»

Human

«metaclass»

Machine

*

*

plays

1

*

«metaclass»

Entity

«metaclass»

Information

«entity»

Material

«metaclass»

Object

*

*

is processed within

*

*

uses

* *

is processed by

*

1

collaborates with

«metaclass»

Properties
* 1

3 has

«metaclass»

Goal
* 1

is realized by

1

*

is organized with

Standards in BPM

 Specification language BPMN (Business Process Modeling
Notation)

 BPMN creates a standardized bridge for the gap between the
business process design and process implementation.

 BPMN defines a Business Process Diagram (BPD), which is
based on a flowcharting technique tailored for creating
graphical models of business process operations.

 Executable Languages: BPML (Business Process Modeling
Language) and BPEL (Business Process Execution
Language)

 BPMN is supported with an internal model that enables the
generation of executable BPEL.

Formal Methods

 Formal methods for specification and analysis

 Pi-calculus Overview

 Petri Nets and their properties

 Modeling processes by WF-Nets

 Analysis of business processes

 Fomalization and verification of informally specified processes

Formal Methods for Specification and Analysis

 Formal methods include

 Formal specification

 Specification analysis and proof

 Transformational development

 Process verification

 Language for formal specification has to have precise and

unambiguous syntax and semantics.

Techniques for the precise and unambiguous specification of
business processes.

Mathematical Representation of the Process

 Formal specifications are expressed in a mathematical

notation with precisely defined vocabulary, syntax and

semantics.

 Algebraic approach

 The system is specified in terms of its operations and their

relationships.

 Model-based approach

 The system is specified in terms of a state model that is

constructed using mathematical constructs such as sets and

sequences.

Process Algebra: Pi-calculus

 The pi-calculus is a process algebra developed by Robin Milner.

 The pi-calculus is a successor of CCS (Calculus of Communicating

Systems) language.

 The aim of the pi-calculus is to be able to describe concurrent

computations whose configuration may change during the

computation.

 The pi-calculus is a mathematical formalisms for describing and analyzing

properties of concurrent computation.

 The pi-calculus is so minimal that it does not contain primitives such as

numbers, booleans, data structures, variables, functions, or even the usual

flow control statements (such as if... then...else, while...).

Names and Processes

 The names are ubiquitous in the language. They roughly

corresponds to identifier in programming languages, and are

generally noted in lowercase (order, customer ...).

 Names are the only data values available in pure Pi-calcullus

 Some names are used to transport other names – channels

 Processes represent the basic building blocks to describe

behavior.

 Process expressions can be arranged either sequentially

(using a simple dot .) or concurrently (using verical bar |).

 The Pi-calculus uses sum operator (+) to model

nondeterministic choice.

Basic Communication
 There are two basic output and input actions:

 Output action (emission) c!x means send value x on channel c

 Input action (reception) c?(x) means receive a value on channel c, binding that
value to the name x (bound name)

 Communicating processes:
 Let„s have two concurrent processes separated by verical bar |:

c!hello . d?(x) | c?(y) . d!y

The process on left is a sequence of two actions – the first one c!hello sends
value hello along the channel c. A reception on c follows. The emission on the
left is said to be prefix and what follows is a continuation of the process. The
process on the right first listens on channel c and then reemits the same
information (using the bounds name y) on the channel d (echoing process).

 Synchronization is based on the rule that both an emission prefix and a
reception prefix must be matched to exchange the information:

c!hello . d?(x) | c?(y) . d!y → d?(x) | d!hello

means one step execution of the process (reduction). First the bound name y
has been substituted by the name hello and then both prefixes disappeared
(they were executed).

Process Abstraction

 Construct called abstraction allows to name behavior definitions. It is possible to use
this name within process expression to model calls and recursion. This is the analogy
to function definitions and functions calls in other programming languages:

Sink(c) = c?(x) . Sink(c)

means that process Sink(c) consumes all values transmitted to it on channel c. Here c
is a bound name in a function definition that will be instantiated to an explicit channel
for each actual use of the function.

Source(d) = (d!hello . d!world . Source(d)) + (d!hi . d!all . Source(d))

produces infinite sequence of pairs hello world and hi all. Both pairs can interleave
arbitrarily because choise is nondeterministic.

 Restriction operator (new c) P creates a new and unique name c local to a process
expression P:

(new com) Source(com) | Sink(com)

runs forever, transmitting a sequence of pairs hello world and hi all on channel com.
Every hello is followed by world as well as hi is followed by all.

Syntax of Pi-calculus
Prefixes α ::= a!x Output action (emission)

a?(x) Input action (reception)

Processes P ::= 0 Nil – no action is performed

α.P Prefix

P + P Choice

P | P Parallel

(new x) P Restriction

A(y1, ..., yn) Identifier

Definitions A(x1, ..., xn) = P Definition can be thought of as a process

declaration, x1, ..., xn as formal parameters,

and the identifier A(y1, ..., yn) as an invocation

with actual parameters y1, ..., yn.

Example: Order Processing

 Definitions:
Purchase(customer,order) = customer!order . customer?(bank, bill) . bank!bill
// Send order along a customer channel, wait for bank where to pay bill and pay a bill

Sale(client) = client?(specification) . client!<swissbank,invoice>
// Wait for specification from client and send him/her invoice and bank connection

 Execution
(new steve, bmw)

Purchase(steve, bmw) | Sale(steve)

steve!bmw . steve?(bank,bill) . bank!bill | steve?(specification) . steve!<swissbank,invoice>
→
steve!bmw . steve?(bank,bill) . bank!bill | steve?(bmw) . steve!<swissbank,invoice>
→
steve?(bank,bill) . bank!bill | steve!<swissbank,invoice>
→
steve?(swissbank,invoice).swissbank!invoice | steve!<swissbank,invoice>
→
swissbank!invoice | 0

 Reconfiguration of the process
(new steve, mary, bmw, honda)

Purchase(steve, bmw) | Purchase(john, honda) | Sale(steve) | Sale(mary)

Order Processing Revised

 Definitions:
Purchase(customer,order) = customer!order . customer?(bank,bill) . bank!bill . customer?(product)
// Send order along a customer channel, wait for bank where to pay bill, pay a bill and wait for a product

Sale(client) = client?(spec) . (spec! | (bmw? . BMW(client, spec) + honda? . Honda(client,spec))
// if spec = bmw then BMW(client, bmw) or if spec = honda then Honda(client, honda)

BMW(client,spec)
= (production!<client,spec> . client?(car) | client!<swiss,invoice>) . swiss?(payment) . client!car

// Produce specified car , send an invoice to the client, wait for payment and then ship a car

Honda(client,spec)
= (warehouse!<client, spec> . client?(car) | client!<nomura,invoice>) . nomura?(payment) . client!car

// Find specified car , send an invoice to the client, wait for payment and then ship a car

Production() = production?(client, specification) . (client!car | Production())
// Wait for specification, start production for a client and continue waiting for a new specification

Warehouse() = warehouse?(client, specification) . (client!car | Warehouse())
// Wait for a specification, start searching the car for a client and continue waiting for a new specification

 Execution
(new steve, bmw, mary, honda)

Purchase(steve, bmw) | Purchase(mary, honda) | Sale(steve) | Sale(mary) | Production() | Warehouse()

Finite Automata

 Finite automata are defined by

 Q - finite set of states

 I - finite set of inputs

 : Q I Q - state transition function

 q0 - initial state

 F Q - set of final states

 Visualization is based on statechart diagrams

Formal Specification of Invoice States

 Q = {Articles shipped, Issued, Authorized, Not paid, Order completed}.

 I = {drawing, authorization, sending, payment not done, payment completed}.

 (Articles shipped, drawing) = Issued,
(Issued, authorization) = Authorized,
(Issued, sending) = Not paid,
(Authorized, sending) = Not paid,
(Not paid, payment not done) = Not paid,
(Not paid, payment completed) = Order completed.

 q0 = Articles shipped.

 F = {Order completed}.

State Diagram: Invoicing
Initial state q0

Final state

State
Input

Transition

Articles shipped

Issued

drawing

Authorized

authorization

Not paid

sending

sending

payment completed

payment not done

Order completed

Introduction to Petri Nets

S1 S2

e

S1 S2e

Change of state modeled

by Finite Automata

Change of state modeled

by Petri Nets

State

Transition

Place
Transition

Partial states modeled by

Petri Nets

S1
1

S1
2

S1
3

e

S2
1

S2
2

Petri Nets
 A Petri Net is a triple PN = (P, T, F):

 P is a finite set of places

 T is a finite set of transitions

 is a set of arcs (flow relation)

 A marking of a PN = (P, T, F) – denoted by M: P N is a

mapping which assigns a non-negative integer number of

tokens to each place of the net.

 A marking M (distribution of tokens over places) is often

referred as the state of a given Petri Net.

 Notation •t is used to denote the set of input places for a

transition t. The notation t•, •p and p• have similar meanings,

that is p• is the set of transitions sharing p as an input place.

TP

PTTPF

t1 t2

p1 p2

p3

p4

Petri Net Model of Wash-stand

Car wash

required
Paid

Wash-stand

empty

Car washed

Payment Washing

Process Simulation using Petri Net
Car wash

required
Payment Paid

Wash-stand

empty

Washing Car washed

Car wash

required
Payment Paid

Wash-stand

empty

Washing Car washed

Car wash

required
Payment Paid

Wash-stand

empty

Washing Car washed

Car wash

required
Payment Paid

Wash-stand

empty

Washing Car washed

Car wash

required
Payment Paid

Wash-stand

empty

Washing Car washed

Initial state: tokens are in places Car wash

required and Wash-stand empty.

Transition Payment fired. Token is removed

from the input place Car wash required.

Payment is finished. Token is put in place

Paid. Transition Washing is enabled.

Transition Washing is fired. Tokens are

removed from its input places.

Final state. Tokens are moved to Car washed

and Wash-stand empty places.

Formal Specification of Wash-stand

 Wash-stand Petri Net

 P = {p1, p2, p3, p4}.

 T = {t1, t2}.

 F = { p1, t1 , p2, t2 , p3, t2 , t1, p2 , t2, p3 , t2, p4 }.

 Dynamic behavior – states reached during process execution

1. p1+p3

2. p2+p3

3. p3+p4.

Significant Properties of Petri Nets

 We use (PN, M) to denote a Petri Net PN with an initial state

M.

 For any to states M1 and M2, M1 ≤ M2 iff for all

p P: M1(p) ≤ M2 (p), where M(p) denotes the number of

tokens in place p in state M.

 Firing rule: a transition t is said to be enabled iff each input

place p of t contains at least one token.

 A state is Mn called reachable from M1 iff there is a firing

sequence that leads Petri Net from state M1 to state Mn via a

(possibly empty) set of intermediate states M2, … Mn-1.

Reachability Graph of Wash-stand
Car wash request Payment Paid

Wash-stand

empty

Washing Car washed

[2,0,1,0] [1,1,1,0] [1,0,1,1]

[0,2,1,0] [0,1,1,1]

[0,0,1,2]

Traffic Lights Petri Net

p1: Red

p2: Yellow

p3: Green

yr

rg

gy

[1,0,0] [0,0,1]

[0,1,0]

Verification of Traffic Lights
p1: Red1

p2: Yellow1

p3: Green1

yr1

rg1

gy1

yr2

rg2

gy2

p5: Red2

p6: Yellow2

p7: Green2

p4: x

[1,0,0,1,1,0,0]

[0,1,0,0,1,0,0] [1,0,0,0,0,1,0]

[0,0,1,0,1,0,0] [1,0,0,0,0,0,1]

Initial marking M0

There are no both green lights

on in the reachability graph

=> no accident can happen but

nondeterministic behavior of

Petri Net can cause that just

one traffic lights will change

their states!

Correct Model of Traffic Lights
p1: Red1

p2: Yellow1

p3: Green1

yr1

rg1

gy1

yr2

rg2

gy2

p6: Red2

p7: Yellow2

p8: green2

p4: x1 p5: x2

[1,0,0,1,0,1,0,0]

[1,0,0,0,0,0,0,1]

[1,0,0,0,0,0,1,0]

[1,0,0,0,1,1,0,0]

[0,0,1,0,0,1,0,0]

[0,1,0,0,0,1,0,0]

Liveness and Boundness

 A Petri Net (PN, M) is live iff for every reachable state M’ and

every transition t there is a state M’’ reachable from state M’

that enables t (=> every transition can fire arbitrarily many

times).

 A Petri Net (PN, M) is bounded iff for each place there is a

natural number n such that for every reachable state the

number of tokens in place p is less than n. The net is safe iff

for each place the maximum number of tokens does not

exceed 1.

Live Petri Net

Car was required Payment Paid

Wash-stand

empty

Washing Car washed

Car usage

Every transition can fire

arbitrarily many times.

Colored Petri Net:

Order Processing

Order

received

Consider

order

Order

rejected

Check

articles

availability

Articles

available?

Ship

order

Order

shipped

Send

bill

Payment

not paid

Check

payment

Order

completed

Purchase

material

Material

available

Produce

articles

Order

accepted?

t1

t1

t2

Purchase

ready

t3

t4

Payment

completed?

Empty transition

required by Petri

Net formalism.

Token carries information

needed for deterministic

execution of Petri Net.

Extended

Notation AND-split

AND-join

OR-split

preconditions

OR-join

AND/OR-split

preconditions

Notation

Petri Net

meaning

Modified Petri Net:

Order Processing

Order

received

Consider

order

Order

rejected

Check

articles

availability

Articles

available

Ship

order

Order

shipped

Send

bill

Payment

not done

Check

payment

Order

completed

Purchase

material

Make

production

plan

Material

available

Plan

available

Produce

articles

Order

accepted

Begin

production

Purchase

ready

Articles

to produce

Articles must

be produced

Extended notation

makes process

model closer to

reality while all

properties of Petri

Net theory is

preserved.

Temporal Extension
Order

shipped

Send

bill

Payment

not done

Check

payment

Order

completed

7 days

In case that Check payment

was not successful token is

moved to place Payment not

done but it is consumed

again after 7 days. The

token was associated with

Time Stamp 7 days delay.

Structuring Petri Nets

Send

bill

Payment

not done

Check

payment

Order

shipped

Invoicing

Order

completed

Subprocess Invoicing is

substituted by refined Petri

Net.

Exercise 5

 Create Petri Net model of Traffic Lights where the yellow light

is on when lights are switching from red to green and back

from green to red.

Modeling Processes by WF-Nets

 A Petri net which models the control-flow dimension of a

workflow, is called a Work-Flow Net (WF-Net).

 A Petri net PN = (P; T; F) is a WF-Net if and only if:

1. There is one source place i P such that •i = ∅.

2. There is one sink place o P such that o• = ∅.

3. Every node x P T is on a path from i to o.

Workflow Structures
x y

Sequence

x

y

Implicit selection

x

Explicit selection

Concurrency

x

x

y

While-Do Loop

y

Repeat-Until Loop

x

WF-Net:

Order Processing

Start

Consider

order

Order

rejected

Check

articles

availability

Articles

available

Ship

order

Order

shipped

Send

bill

Payment

not done

Check

payment

Order

completed

Purchase

material

Material

available

Produce

articles

Order

accepted

Begin

production

Purchase

ready

Articles must

be produced

End

Make

production plan

Plan

available

Articles

to produce

Close

order

Beginning of the process

End of the process

Resource initiative trigger

Time signal trigger

External event trigger

Hierarchical

Decomposition

Start

Consider

order

Check

articles

availability

Articles

available

Ship

order

Order

shipped

Send

bill

Payment

not done

Check

payment

Order

completed

Production

Order

accepted

Articles must

be produced

End

Close

order

Subprocess

Exercise 6

 Create WF-Net for the process of delivery service. Let‟s have

activities Accept Order, Send Bill, Accept Payment, Ship

Order and Cancel Order. When the order is accepted the bill

is sent to customer. In case that the payment is not received

in a given time interval order is canceled. If payment is

received in time then the order is shipped to customer.

Analysis of Business Processes

 Analysis of business processes is based on analysis of

properties inherent to Petri Nets:

 reachability

 liveness

 boudness

 and others …

 For the purpose of correct design of workflow property

soudness was introduced.

Soudness
 A procedure modeled by WF-Net PN = (P, T, F) is sound if

and only if:

 For every state M reachable from state i, there exists a firing
sequence leading from state M to state o.

 State o is the only state reachable from state i with at least
one token in place o.

 There are no dead transition in (PN, i).

 The first requirement states that starting from the initial state
(state i), it is always possible to reach the state with one token
in place o (state o). The second requirement states that the
moment a token is put in place o, all the other places should
be empty. Sometimes the term proper termination is used to
describe the first two requirements. The last requirement
states that there are no dead transitions in the initial state i.

Reachability Graph for Order Processing
Start

Order

rejected

Articles

available

Order

shipped

Payment

not done

Order

completed

Material

available

Order

accepted

Purchase

ready

Articles must

be produced

End

Plan

available

Articles

to produce
+

Articles

to produce
+

Purchase

ready
+

Plan

available

Material

available
+

Start state –

token is in

place Start.
Intermediate state – tokens are

in places Purchase ready and

Articles in produce at the same

time.

Final state –

token is in

place End.

Faulty Process

Start

Consider

order

Begin

production

Begin

invoicing

Make

production

plan

Decide type

of payment

Plan

available

Begin

payment by

invoice

Begin cash

payment

Pay cash

Cash

paid

Pay deposit
Produce

articles

Articles

produced

Deposit

paid

Send

invoice

Invoice

not paid

Check

payment

Invoice

paid

Complete

payment

Payment

completed

Ship

order

End

Construct reachability

graph and find the

problem(s).

Verification of Soundness

 The first method how to determine soudness requires to add an additional
transition t* that connects start place i with end place o (short-circuited
net). Based on that the soudness of of the WF-Net corresponds with two
properties: liveness and boundness of short-circuited net. The issue is
that verification of liveness and boudness requires computer tools for
complex process models.

 The second method is based on the construction process of correct
workflow nets. If we have two sound and safe WF-Nets WF1 and WF2 and
we have transition t in WF1 which has just one input and one output place,
then we may replace task t in WF1 by WF2 and the resulting WF-Net is
sound and safe again.

 The safety is required because in case that input place of substituted
transition t contains more than one token the inserted WF-Net does not
need to be sound.

Sound and Safe Components

x

Basic block

x y

Sequence

x

y

Implicit selection

x

y

Explicit selection

x

y

Concurrency

x

y

Loop

Well-structured WF-Nets

 Well-structured WF-Net contains balanced AND/OR-splits

and AND/OR-joins. It means that two concurrent flows

initiated by AND-split should not be joined by OR-join. Two

alternative flows created via OR-split cannot be synchronized

by AND-join.

 The main advantage of using well-structured nets is that

sound and well-structured WF-Nets are also safe. It means

that based on using of sound and well-structured components

these components are also safe and we can build new sound

and well-structured WF-Nets (and components).

Building Sound WF-Nets from Components

Start

End

Order

processing

Consider

order

Process

order

End

Order

accepted

Order

completed

Order

rejected

Close

order

Consider

order

Invoicing

End

Order

accepted

Order

completed

Close

order

Check

articles

availability

Articles must

be produced

Production

Articles

produced

Articles

available

Ship

order

Order

shipped

Consider

order

Provide

articles

End

Order

accepted

Order

completed

Order

rejected

Close

order

Order

shipped

Invoicing

Start Start
Start

Building Sound WF-Net cont.

Consider

order

Cashing

End

Order

accepted

Order

completed

Order

rejected

Close

order

Check

articles

availability

Articles must

be produced

Articles

produced

Articles

available

Ship

order

Order

shipped

Purchase

material

Material

available

Produce

articles

Purchase

ready

Make

production

plan

Plan

available

Articles

to produce

Send

bill

Payment

not done

Start

Begin

production

Consider

order

Check

payment

End

Order

accepted

Order

completed

Order

rejected

Close

order

Check

articles

availability

Articles must

be produced

Articles

produced

Articles

available

Ship

order

Order

shipped

Purchase

material

Material

available

Produce

articles

Purchase

ready

Make

production

plan

Plan

available

Articles

to produce

Send

bill

Payment

not done

Outstanding

Begin

production

Formalization and Verification of Processes

 Key issues of formal methods:

 Formal methods reduce number of errors in process

specification but the mathematical representation requires

more time to obtain results.

 Formal methods are hard to scale up to large systems.

 The main area of their applicability is critical systems. In this

area the use of formal methods seems to be cost-effective.

 Formalization of informally defined processes:

 The idea is to combine formal methods with diagrammatic

languages like EPC or UML.

EPC Formalization

 An event-driven process chain is a five-tuple EPC = (E, F, C, T, A) :

 E is a finite set of events,

 F is a finite set of functions,

 C is a finite set ogf logical connectors,

 is a function which maps each connector onto a connector

type,

 is a

set of arcs.

 Next step is to define rules of how the EPC model can be transformed to WF-

Net.

 Resulting WF-Net can be verified using standard methods and tools applicable to

Petri Nets.

 Building of EPC diagrams can employ well-structured components as well as

constructing WF-Nets.

,,: XORCT

CCFCCFECCEEFFEA

Mapping Connectors on Petri Nets

V

XOR

V

XOR

e1 e1

e1 e1

e1 e1

e1 e1

e2 e2

e2 e2

f1 f1

f1 f1

f1 f1

f1 f1

f2 f2

f2 f2

V

XOR

V

XOR

e1 e1

e1 e1

e1 e1

e1 e1

e2 e2

e2 e2

f1 f1

f1 f1

f1 f1

f1 f1

f2

f2 f2

Connecting

Events to

Activities

Connecting

Activities to

Events

Transformation of EPC Model to Petri Net

Event 1 Event 2 Event 3

XOR

Event 1 Event 2 Event 3

XOR

Activity X

Event X

V

Activity 1

Event 4

V

Activity 1

Event 4

Event 1 Event 2

Event 4

Activity 1

Activity X

Event X

Arcs between two connectors must be

replaced by events and functions before the

EPC is mapped onto a Petri Nedt.

Transformed EPC:

Order Processing

Order

received

Consider

order

Order

rejected

Order

accepted

Check

articles

availability

Articles

available

Ship

order

Order

shipped

Send

bill

Payment

not done

Check

payment

Order

completed

Articles must

be produced

Purchase

material

Make

production

plan

Material

available

Plan

availableProduce

articles

Articles

produced

Uncolored (fictive)

places and transition

were added to Petri

Net because of

transfromation

process.

Exercise 7

 Transform the give process model

specified in EPC diagram to Petri Net.

Is this process sound?

Articles must

be produced

V

Purchase

material

Make

production

plan

Material

available
Plan available

V

Produce

articles

Articles

produced

Software Tools

 ARchitecture of Integrated Systems (ARIS)

 Business Process Studio (BP Studio)

Architecture of Integrated Systems

 Conceptual Framework that helps to describe organizations:

their organizational structure, their processes and their

resources in terms of people and information systems.

 Software tool that helps to apply the conceptual framework.

The software tool helps to electronically describe

organizations in a consistent manner and analyze them in

some respects.

 More at … http://www.ids-scheer.com

http://www.ids-scheer.com/
http://www.ids-scheer.com/
http://www.ids-scheer.com/

ARIS Framework

Management

SalesManufacture

Sale

Process

request
Process offer

Check

production

Determine

delivery date

Request

accepted

Process

request

Request

processed

Process offer

Offer Request

Customer

SalesRequest

Organizational view

Data view Control view Functional view

Business Process Studio

 BPStudio is user friendly, so domain experts without a special

knowledge of information technology can use it.

 BPStudio is based on a formal approach (Petri Nets) that

enables analysis, simulation, and later execution of a built

model (workflow engine).

 BPStudio is focused on concurrency as a primary and

inherent property of any business process

 Download … http://vondrak.cs.vsb.cz/download.html

http://vondrak.cs.vsb.cz/download.html

Three Aspects of Business Modeling

Functional
Model

Activity Coordination
Model

Object
Model

Business
Process

The main aim of the functional model is

an identification of the business process

architecture, as well as the identification

of process customers and products.Object model identifies static structure of

all entities (objects) that are essential for

the enactment of the process.

Coordination model shows how the

process will be enacted. The coordination

model specifies interactions among

objects and defines the way how all these

activities are synchronized.

Functional Model: Car Sale

Process

Customer

Process

Owner

Process

Product

Process

Collaboration relationship

exhibits a possibility

of concurrent existence of

processes

Contains relationship

means that a process

launches contained

process and finishes it

when required

products are obtained

Functional Model: Financing

External Process is not

elaborated in a given “Car

Sale” process model

Functional Model: Car Hand Over

Object Model: Car Sale

Active

Object

Passive Object

with attributes

displayed

Association

Relationship

Association

Cardinality

Object Model: Financing

Generalization/Specialization

Relationship

Object Model: Car Hand Over

Active Object with

attributes and services

displayed

Coordination Model: Car Sale

Activity with specified

scenarios, their costs and

durations

Contained process

Fork

Coordination Model: Financing

Branching

Coordination Model: Car Hand Over

Responsibility

State has to correspond with Car

Sale coordination model

Structural Analysis

 What activities define the process

 What activities and processes the active object participates in

 What activities and processes the active object is responsible

for

 What activities and processes manipulate, consume or

produce the passive object

Before activity execution

After activity execution

Simulation

 Verification

 Validation

 Costs analysis

 Time analysis

Simulation Result
Predicted duration

Duration of just

finished activity

Duration of running

activity

Utilization means how much time

object spent in a process compared

to the process total time.

Cloning

Process model

describes how the

process should look.

Process is simulated

by a computer.

Process instance

represents real process

that exists and humans

execute it using tools

like machines,

computers etc.

Process Enactment

BPStudio Architecture

ORB

BP Actor

Web Browser

BP Actor

BP Model

Model Repository

Web Browser

BP Viewer

BP Control

Instance Repository

Conclusions

 Common methods for business modeling were introduced:

IDEF, EPC and UML.

 Importance of formal methods and their contribution to

business process modeling were demonstrated.

 Software tools ARIS and BPStudio were introduced to show

how eEPC and Petri Nets can be used in practice.

Solution to Exercise 1

TITLE:NODE: NO.:A5 Fakurace a inkaso

1

Invoice sending

2

Payment

Checking

Bill of sale

Bill sent

Bill sent

Order closed

Bank statement

Accounting

department

Solution to

Exercise 2

Articles must

be produced

V

Purchase

material

Make

production

plan

Material

available

Plan

available

V

Produce

articles

Articles

produced

Check

material

availability

V

Material in

stock

Material

shipped

V

Material must

be purchased

Solution to Exercise 3

«worker»

Sales

«entity»

Material

«entity»

Product

«worker»

Manufacture

1

*

purchases

* 1

is required by

1

*

produces

*

1

is used by

Solution to Exercise 4

ManagerAccountant

Invoice drawing

Authorization

Invoice sending

[amount > 5000 USD]

[amount <= 5000 USD]

Solution to Exercise 5

yrry

gyyg

Red

Yellow

Solution to Exercise 6
Start

Accept

order

Order

accepted

Send

bill

Bill

sent

Accept

payment

Payment

accepted

Ship

order

End

Cancel

order

Solution to Exercise 7
Articles must

be produced

Articles

produced

Purchase

material

Material

available

Make

production

plan

Plan available

Produce

articles

The WF-Net

is sound.

